Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.758
Filtrar
1.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651641

RESUMEN

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Células Ciliadas Auditivas , Morfogénesis , Animales , Ratones , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Polaridad Celular , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética
2.
Cell Commun Signal ; 22(1): 218, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581012

RESUMEN

Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/ß5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/ß5 loop, the α4 helix, and the α4/ß6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.


Asunto(s)
Adenilil Ciclasas , GTP Fosfohidrolasas , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Portadoras , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
3.
Nat Commun ; 15(1): 1990, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443355

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins and are important drug targets. The discovery of drugs targeting these receptors and their G protein signaling properties are based on assays mainly performed with modified receptors expressed in heterologous cells. However, GPCR responses may differ in their native environment. Here, by using highly sensitive Gi/o sensors, we reveal specific properties of Gi/o protein-mediated responses triggered by GABAB, α2 adrenergic and cannabinoid CB1 receptors in primary neurons, different from those in heterologous cells. These include different profiles in the Gi/o protein subtypes-mediated responses, and differences in the potencies of some ligands even at similar receptor expression levels. Altogether, our results show the importance of using biosensors compatible with primary cells for evaluating the activities of endogenous GPCRs in their native environment.


Asunto(s)
Neuronas , Receptores Acoplados a Proteínas G , Transducción de Señal , Adrenérgicos , Bioensayo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go
4.
Mov Disord ; 39(3): 601-606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358016

RESUMEN

BACKGROUND: Patients carrying pathogenic variants in GNAO1 present a phenotypic spectrum ranging from severe early-onset epileptic encephalopathy and developmental delay to mild adolescent/adult-onset dystonia. Genotype-phenotype correlation and molecular mechanisms underlying the disease remain understudied. METHODS: We analyzed the clinical course of a child carrying the novel GNAO1 mutation c.38T>C;p.Leu13Pro, and structural, biochemical, and cellular properties of the corresponding mutant Gαo-GNAO1-encoded protein-alongside the related mutation c.68T>C;p.Leu23Pro. RESULTS: The main clinical feature was parkinsonism with bradykinesia and rigidity, unlike the hyperkinetic movement disorder commonly associated with GNAO1 mutations. The Leu ➔ Pro substitutions have no impact on enzymatic activity or overall folding of Gαo but uniquely destabilize the N-terminal α-helix, blocking formation of the heterotrimeric G-protein and disabling activation by G-protein-coupled receptors. CONCLUSIONS: Our study defines a parkinsonism phenotype within the spectrum of GNAO1 disorders and suggests a genotype-phenotype correlation by GNAO1 mutations targeting the N-terminal α-helix of Gαo. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Trastornos Parkinsonianos , Adolescente , Niño , Humanos , Estudios de Asociación Genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Trastornos del Movimiento/genética , Mutación/genética , Trastornos Parkinsonianos/genética , Conformación Proteica en Hélice alfa
5.
Nature ; 626(8001): 1141-1148, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326620

RESUMEN

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Sensibles al Calcio , Humanos , Regulación Alostérica/efectos de los fármacos , Cinacalcet/farmacología , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Lípidos , Nanoestructuras/química , Poliaminas/metabolismo , Conformación Proteica/efectos de los fármacos , Receptores Sensibles al Calcio/química , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/ultraestructura , Especificidad por Sustrato , Triptófano/metabolismo , Calcio/metabolismo
6.
Nucleic Acid Ther ; 34(2): 90-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215303

RESUMEN

RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous GNAO1 c.607 G > A variant causing GNAO1 encephalopathy. By screening short interfering RNA (siRNA), we showed that GNAO1 c.607G>A is a druggable target for RNAi. The si1488 candidate achieved at least twofold allelic discrimination and downregulated mutant protein to 35%. We created vectorized RNAi by incorporating the si1488 sequence into the short hairpin RNA (shRNA) in the adeno-associated virus (AAV) vector. The shRNA stem and loop were modified to improve the transcription, processing, and guide strand selection. All tested shRNA constructs demonstrated selectivity toward mutant GNAO1, while tweaking hairpin structure only marginally affected the silencing efficiency. The selectivity of shRNA-mediated silencing was confirmed in the context of AAV vector transduction. To conclude, RNAi effectors ranging from siRNA to AAV-RNAi achieve suppression of the pathogenic GNAO1 c.607G>A and discriminate alleles by the single-nucleotide substitution. For gene therapy development, it is crucial to demonstrate the benefit of these RNAi effectors in patient-specific neurons and animal models of the GNAO1 encephalopathy.


Asunto(s)
Encefalopatías , Terapia Genética , Animales , Humanos , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Alelos , Encefalopatías/genética , Vectores Genéticos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética
7.
Dev Med Child Neurol ; 66(2): 195-205, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37482918

RESUMEN

AIM: To describe the experiences and unmet medical care needs of a group of parents of children with developmental and epileptic encephalopathies (DEEs) caused by the SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants. METHOD: A qualitative descriptive study was conducted. Participants were recruited using purposeful sampling. The inclusion criteria consisted of parents of children with DEEs caused by the SCN1A, KCNQ2, CDKL5, PCDH19, or GNAO1 variants, aged between 4 and 10 years old. In total, 21 parents were included. Data were acquired via researcher field notes and in-depth interviews. A thematic analysis was performed. RESULTS: Three main themes were identified: (1) managing symptoms: epileptic seizures are experienced with great uncertainty and are accompanied by cognitive, behavioural, and motor symptoms; (2) accepting treatment: the ideal medication regimen is a challenge and the decision to withdraw or start a new therapy falls on the parents; and (3) therapeutic relationship and medical care: behaviours related to the health professional can hinder the therapeutic relationship with the parents. Parents are apprehensive about going to the emergency department. INTERPRETATION: Professionals in emergency departments should acquire better knowledge of DEEs, welcome parents, and improve treatment for the children. The results of this study can serve as a starting point for a roadmap of relevant caregiver-reported outcomes in DEEs, to be implemented with new clinical trials and aetiology-targeted therapies. WHAT THIS PAPER ADDS: Epileptic seizures are the symptom that is most experienced and feared by parents. The medication regime has no defined protocol and the decision to withdraw a medication is frequently left to parents.


Asunto(s)
Epilepsia , Niño , Humanos , Preescolar , Epilepsia/genética , Epilepsia/terapia , Convulsiones/genética , Atención a la Salud , Padres/psicología , Protocadherinas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go
8.
Medicine (Baltimore) ; 102(45): e35851, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960721

RESUMEN

In the clinic, atrial fibrillation (AF) is a common arrhythmia. Despite constant innovation in treatments for AF, they remain limited by a lack of knowledge of the underlying mechanism responsible for AF. In this study, we examined the molecular mechanisms associated with primary mitral regurgitation (MR) in AF using several bioinformatics techniques. Limma was used to identify differentially expressed genes (DEGs) associated with AF using microarray data from the GSE115574 dataset. WGCNA was used to identify significant module genes. A functional enrichment analysis for overlapping genes between the DEGs and module genes was done and several AF hub genes were identified from a protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were generated to evaluate the validity of the hub genes. We examined 306 DEGs and 147 were upregulated and 159 were downregulated. WGCNA analysis revealed black and ivory modules that contained genes associated with AF. Functional enrichment analysis revealed various biological process terms related to AF. The AUCs for the 8 hub genes screened by the PPI network analysis were > 0.7, indicating satisfactory diagnostic accuracy. The 8 AF-related hub genes included SYT13, VSNL1, GNAO1, RGS4, RALYL, CPLX1, CHGB, and CPLX3. Our findings provide novel insight into the molecular mechanisms of AF and may lead to the development of new treatments.


Asunto(s)
Fibrilación Atrial , Insuficiencia de la Válvula Mitral , Humanos , Fibrilación Atrial/genética , Instituciones de Atención Ambulatoria , Área Bajo la Curva , Biología Computacional , Redes Reguladoras de Genes , Sinaptotagminas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go
9.
Cell Rep ; 42(12): 113462, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37980565

RESUMEN

Heterotrimeric G proteins transduce extracellular chemical messages to generate appropriate intracellular responses. Point mutations in GNAO1, encoding the G protein αo subunit, have been implicated in a pathogenic condition characterized by seizures, movement disorders, intellectual disability, and developmental delay (GNAO1 disorder). However, the effects of these mutations on G protein structure and function are unclear. Here, we report the effects of 55 mutations on Gαo conformation, thermostability, nucleotide binding, and hydrolysis, as well as interaction with Gßγ subunits, receptors, and effectors. Our effort reveals four functionally distinct groups of mutants, including one group that sequesters receptors and another that sequesters Gßγ, both acting in a genetically dominant manner. These findings provide a more comprehensive understanding of disease-relevant mutations and reveal that GNAO1 disorder is likely composed of multiple mechanistically distinct disorders that will likely require multiple therapeutic strategies.


Asunto(s)
Trastornos del Movimiento , Humanos , Mutación/genética , Trastornos del Movimiento/genética , Mutación Puntual , Proteínas de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
10.
Cells ; 12(20)2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37887313

RESUMEN

De novo mutations in GNAO1, the gene encoding the major neuronal G protein Gαo, cause a spectrum of pediatric encephalopathies with seizures, motor dysfunction, and developmental delay. Of the >80 distinct missense pathogenic variants, many appear to uniformly destabilize the guanine nucleotide handling of the mutant protein, speeding up GTP uptake and deactivating GTP hydrolysis. Zinc supplementation emerges as a promising treatment option for this disease, as Zn2+ ions reactivate the GTP hydrolysis on the mutant Gαo and restore cellular interactions for some of the mutants studied earlier. The molecular etiology of GNAO1 encephalopathies needs further elucidation as a prerequisite for the development of efficient therapeutic approaches. In this work, we combine clinical and medical genetics analysis of a novel GNAO1 mutation with an in-depth molecular dissection of the resultant protein variant. We identify two unrelated patients from Norway and France with a previously unknown mutation in GNAO1, c.509C>G that results in the production of the Pro170Arg mutant Gαo, leading to severe developmental and epileptic encephalopathy. Molecular investigations of Pro170Arg identify this mutant as a unique representative of the pathogenic variants. Its 100-fold-accelerated GTP uptake is not accompanied by a loss in GTP hydrolysis; Zn2+ ions induce a previously unseen effect on the mutant, forcing it to lose the bound GTP. Our work combining clinical and molecular analyses discovers a novel, biochemically distinct pathogenic missense variant of GNAO1 laying the ground for personalized treatment development.


Asunto(s)
Encefalopatías , Humanos , Niño , Mutación/genética , Proteínas de Unión al GTP/metabolismo , Iones/metabolismo , Guanosina Trifosfato , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
11.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686252

RESUMEN

Opioid receptors, particularly the µ-opioid receptor (µOR), play a pivotal role in mediating the analgesic and addictive effects of opioid drugs. G protein signaling is an important pathway of µOR function, usually associated with painkilling effects. However, the molecular mechanisms underlying the interaction between the µOR and G protein remain poorly understood. In this study, we employed classical all-atom molecular dynamics simulations to investigate the structural changes occurring with the µOR-G protein complex under two different conditions: with the G protein in the apo form (open) and with the GDP bound G protein (closed, holo form). The receptor was in the apo form and active conformation in both cases, and the simulation time comprised 1µs for each system. In order to assess the effect of the G protein coupling on the receptor activation state, three parameters were monitored: the correlation of the distance between TM3 and TM6 and the RMSD of the NPxxYA motif; the universal activation index (A100); and the χ2 dihedral distribution of residue W2936.48. When complexed with the open G protein, receptor conformations with intermediate activation state prevailed throughout the molecular dynamics, whereas in the condition with the closed G protein, mostly inactive conformations of the receptor were observed. The major effect of the G protein in the receptor conformation comes from a steric hindrance involving an intracellular loop of the receptor and a ß-sheet region of the G protein. This suggests that G-protein precoupling is essential for receptor activation, but this fact is not sufficient for complete receptor activation.


Asunto(s)
Conducta Adictiva , Receptores Opioides , Transducción de Señal , Analgésicos Opioides , Simulación de Dinámica Molecular , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
13.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597514

RESUMEN

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Asunto(s)
Colitis , Receptores Acoplados a Proteínas G , Animales , Ratones , Regulación Alostérica , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Inflamación/tratamiento farmacológico , Cuerpos Cetónicos , Niacina/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
14.
Ann Neurol ; 94(5): 987-1004, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37548038

RESUMEN

OBJECTIVE: GNAO1-related disorders (OMIM #615473 and #617493), caused by variants in the GNAO1 gene, are characterized by developmental delay or intellectual disability, hypotonia, movement disorders, and epilepsy. Neither a genotype-phenotype correlation nor a clear severity score have been established for this disorder. The objective of this prospective and retrospective observational study was to develop a severity score for GNAO1-related disorders, and to delineate the correlation between the underlying molecular mechanisms and clinical severity. METHODS: A total of 16 individuals with GNAO1-related disorders harboring 12 distinct missense variants, including four novel variants (p.K46R, p.T48I, p.R209P, and p.L235P), were examined with repeated clinical assessments, video-electroencephalogram monitoring, and brain magnetic resonance imaging. The molecular pathology of each variant was delineated using a molecular deconvoluting platform. RESULTS: The patients displayed a wide variability in the severity of their symptoms. This heterogeneity was well represented in the GNAO1-related disorders severity score, with a broad range of results. Patients with the same variant had comparable severity scores, indicating that differences in disease profiles are not due to interpatient variability, but rather, to unique disease mechanisms. Moreover, we found a significant correlation between clinical severity scores and molecular mechanisms. INTERPRETATION: The clinical score proposed here provides further insight into the correlation between pathophysiology and phenotypic severity in GNAO1-related disorders. We found that each variant has a unique profile of clinical phenotypes and pathological molecular mechanisms. These findings will contribute to better understanding GNAO1-related disorders. Additionally, the severity score will facilitate standardization of patients categorization and assessment of response to therapies in development. ANN NEUROL 2023;94:987-1004.


Asunto(s)
Epilepsia , Trastornos del Movimiento , Humanos , Estudios Prospectivos , Trastornos del Movimiento/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Mutación Missense , Proteínas de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
15.
Ir J Med Sci ; 192(6): 2887-2895, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37166614

RESUMEN

BACKGROUND: Defects in neurotransmission and synaptogenesis are noteworthy in the pathogenesis of ASD. Synapsin III (SYN III) is defined as a synaptic vesicle protein that plays an important role in synaptogenesis and regulation of neurotransmitter release and neurite outgrowth. Therefore, SYN III may associate with many neurodevelopmental diseases, including ASD. AIM: The aim of this study was to investigate whether the SYN III gene -631 C > G (rs133946) and -196 G > A (rs133945) polymorphisms are associated with susceptibility to ASD. METHODS: SYN III variants and the risk of ASD were investigated in 26 healthy children and 24 ASD children. SYN III gene variants were genotyped by PCR-RFLP methods. The differences in genotype and allele frequencies between the ASD and control groups were calculated using the chi-square (χ2). We analysed the SYN III gene using web-based tools. RESULTS: Our results suggest that the presence of the AA genotype of the SYN III -196 G > A (rs133945) polymorphism affects the characteristics and development of ASD in children (p = 0.012). SYN III -631 C > G (rs133946) polymorphism was not associated with ASD (p = 0.524). We have shown the prediction of gene-gene interaction that SYN III is co-expressed with 17 genes, physical interaction with 3 genes, and co-localization with 12 genes. The importance of different genes (SYN I, II, III, GABRD, NOS1AP, GNAO1) for ASD pathogenesis was revealed by GO analysis. CONCLUSION: Considering the role of SYN III and related genes, especially in the synaptic vesicle pathway and neurotransmission, its effect on ASD can be further investigated.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/genética , Sinapsinas/genética , Polimorfismo de Nucleótido Simple , Genotipo , Predisposición Genética a la Enfermedad , Proteínas Adaptadoras Transductoras de Señales/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética
16.
J Neurol Neurosurg Psychiatry ; 94(10): 806-815, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37225406

RESUMEN

BACKGROUND: Patients carrying pathogenic variants in GNAO1 often present with early-onset central hypotonia and global developmental delay, with or without epilepsy. As the disorder progresses, a complex hypertonic and hyperkinetic movement disorder is a common phenotype. A genotype-phenotype correlation has not yet been described and there are no evidence-based therapeutic recommendations. METHODS: To improve understanding of the clinical course and pathophysiology of this ultra-rare disorder, we built up a registry for GNAO1 patients in Germany. In this retrospective, multicentre cohort study, we collected detailed clinical data, treatment effects and genetic data for 25 affected patients. RESULTS: The main clinical features were symptom onset within the first months of life, with central hypotonia or seizures. Within the first year of life, nearly all patients developed a movement disorder comprising dystonia (84%) and choreoathetosis (52%). Twelve (48%) patients suffered life-threatening hyperkinetic crises. Fifteen (60%) patients had epilepsy with poor treatment response. Two patients showed an atypical phenotype and seven novel pathogenic variants in GNAO1 were identified. Nine (38%) patients were treated with bilateral deep brain stimulation of the globus pallidus internus. Deep brain stimulation reduced hyperkinetic symptoms and prevented further hyperkinetic crises. The in silico prediction programmes did not predict the phenotype by the genotype. CONCLUSION: The broad clinical spectrum and genetic findings expand the phenotypical spectrum of GNAO1-associated disorder and therefore disprove the assumption that there are only two main phenotypes. No specific overall genotype-phenotype correlation was identified. We highlight deep brain stimulation as a useful treatment option in this disorder.


Asunto(s)
Epilepsia , Trastornos del Movimiento , Humanos , Estudios Retrospectivos , Estudios de Cohortes , Hipotonía Muscular , Estudios de Asociación Genética , Epilepsia/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-37034444

RESUMEN

Background: Cerebral palsy (CP) should not be considered a diagnosis, but rather a syndrome related to several etiologies, including, but not limited to, neurological sequelae of a perinatal brain injury. Case report: 24-years-old man with dystonia and delayed motor and cognitive development had been previously diagnosed with CP. Molecular genetic testing identified a heterozygosity variant in GNAO 1 gene. A therapeutic trial with levodopa was started, with improvement of dystonia. Discussion: GNAO1 gene variant disorders share similarities with other causes of CP syndrome, and thus investigation of this variant should be included in instances of CP syndrome without a clear history of previous perinatal brain injury. GNAO1 dystonic phenotype (DYT-GNAO1) should be considered as dopa-responsive dystonia in some cases.


Asunto(s)
Parálisis Cerebral , Dopaminérgicos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Levodopa , Humanos , Parálisis Cerebral/tratamiento farmacológico , Parálisis Cerebral/genética , Dopaminérgicos/uso terapéutico , Distonía/tratamiento farmacológico , Distonía/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Heterocigoto , Levodopa/uso terapéutico , Fenotipo , Masculino , Adulto Joven
18.
Int J Biol Sci ; 19(6): 1910-1924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063428

RESUMEN

The stem cell factor (SCF) binds to c-Kit in endothelial cells, thus activating downstream signaling and angiogenesis. Herein, we examined the role of G protein subunit alpha inhibitory (Gαi) proteins in this process. In MEFs and HUVECs, Gαi1/3 was associated with SCF-activated c-Kit, promoting c-Kit endocytosis, and binding of key adaptor proteins, subsequently transducing downstream signaling. SCF-induced Akt-mTOR and Erk activation was robustly attenuated by Gαi1/3 silencing or knockout (KO), or due to dominant negative mutations but was strengthened substantially following ectopic overexpression of Gαi1/3. SCF-induced HUVEC proliferation, migration, and capillary tube formation were suppressed after Gαi1/3 silencing or KO, or due to dominant negative mutations. In vivo, endothelial knockdown of Gαi1/3 by intravitreous injection of endothelial-specific shRNA adeno-associated virus (AAV) potently reduced SCF-induced signaling and retinal angiogenesis in mice. Moreover, mRNA and protein expressions of SCF increased significantly in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. SCF silencing, through intravitreous injection of SCF shRNA AAV, inhibited pathological retinal angiogenesis and degeneration of retinal ganglion cells in DR mice. Finally, the expression of SCF and c-Kit increased in proliferative retinal tissues of human patients with proliferative DR. Taken together, Gαi1/3 mediate SCF/c-Kit-activated signaling and angiogenesis.


Asunto(s)
Células Endoteliales , Transducción de Señal , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Factor de Células Madre/genética , Factor de Células Madre/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo
20.
Mol Carcinog ; 62(7): 1038-1050, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37067396

RESUMEN

Endometrial cancer (EC) is the most common gynecologic malignancy in the world and incidence is steadily increasing. The Levonorgestrel Intrauterine System (LNG-IUS) is an alternative conservative treatment for early-stage EC, however, Levonorgestrel (LNG) resistance occurs for 1 in 3 people. This study aimed to present potential LNG resistance mechanisms and identify differentially expressed genes (DEGs) in EC cell lines. Two LNG resistant cell lines were developed through long term culture in LNG (MFE296R and MFE319R ). Whole transcriptome sequencing was carried out on triplicate RNA samples. EdgeR v3.32.1 was used to identify differentially DEGs. Blast2go V6.0 (BioBam software) was used for functional annotation and analysis of genomic datasets. Protein interactions were investigated using the STRING database, including the identification of genes with high levels of interaction (HUB genes). Select DEGs and HUB genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Fifteen DEGs were identified according to FDR < 0.05 and logFC < 2. Protein analysis identified six HUB genes with a degree of connectivity > 10. Relative mRNA expression of MAOA, MAOB, THRSP, CD80, NDP, LINC01474, DUSP2 and CXCL8 was significantly upregulated in both LNGR cell lines. Relative protein expression of GNAO1 and MAOA were significantly upregulated in both LNGR cell lines. This research identified novel markers of resistance in LNGR cell lines. We discussed potential mechanisms of LNG resistance including dedifferentiation and immunostimulation. The next step for this research is to validate these findings further in both translational and clinical settings.


Asunto(s)
Anticonceptivos Femeninos , Neoplasias Endometriales , Femenino , Humanos , Levonorgestrel/farmacología , Levonorgestrel/uso terapéutico , Transcriptoma , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Procesamiento Proteico-Postraduccional , Subunidades alfa de la Proteína de Unión al GTP Gi-Go
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...